• 矩形面积并

将矩形划分为每个 行块 , 一一统计出边和入边, 计算每条边的贡献, 以每条边计算 S

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
#include<bits/stdc++.h>
using namespace std;
using i64 = long long;

struct Scanline {
int n, num;
vector<int> tag;
vector<i64> len, xx;
i64 S;

struct Line {
i64 y, lx, rx;
int flag; // 1是入边,-1是出边
Line() {}
Line(i64 y, i64 lx, i64 rx, int flag)
: y(y), lx(lx), rx(rx), flag(flag) {}

bool operator<(const Line& other) const { return this->y < other.y; }
};

vector<Line> line;

Scanline(int n) : n(n), num(0), S(0) {
tag.assign(n * 16 + 1, 0);
len.assign(n * 16 + 1, 0);
}

void add(i64 x1, i64 x2, i64 y1, i64 y2) {
line.emplace_back(y1, x1, x2, 1);
xx.push_back(x1);
line.emplace_back(y2, x1, x2, -1);
xx.push_back(x2);
}

void pushup(int s, int t, int p) {
if (tag[p]) {
len[p] = xx[t] - xx[s];
} else if (s + 1 == t) {
len[p] = 0;
} else {
len[p] = len[p * 2] + len[p * 2 + 1];
}
}

void update(int l, int r, int flag, int s, int t, int p) {
if (l <= s && t <= r) {
tag[p] += flag;
pushup(s, t, p);
return;
}
int m = (s + t) / 2;
if (l < m) update(l, r, flag, s, m, p * 2);
if (r > m) update(l, r, flag, m, t, p * 2 + 1);
pushup(s, t, p);
}

void init() {
sort(xx.begin(), xx.end());
sort(line.begin(), line.end());
num = unique(xx.begin(), xx.end()) - xx.begin();
}

void work() {
init();
for (int i = 0; i < line.size(); i++) {
if (i > 0) {
S += len[1] * (line[i].y - line[i - 1].y);
}
int l = lower_bound(xx.begin(), xx.begin() + num, line[i].lx) - xx.begin();
int r = lower_bound(xx.begin(), xx.begin() + num, line[i].rx) - xx.begin();
update(l, r, line[i].flag, 0, num - 1, 1);
}
}

i64 get_area() {
return S;
}
};

注意: 该线段树使用的是左闭右开区间。

  • 矩形周长并:
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    67
    68
    69
    70
    71
    72
    73
    74
    75
    76
    77
    78
    79

    struct Scanline { //周长并
    int n, num;
    vector<int> tag;
    vector<i64> len, xx;
    i64 C;

    struct Line {
    i64 y, lx, rx;
    int flag; // 1是入边,-1是出边
    Line() {}
    Line(i64 y, i64 lx, i64 rx, int flag)
    : y(y), lx(lx), rx(rx), flag(flag) {}

    bool operator<(const Line& other) const {
    if (this->y != other.y) return this->y < other.y;
    else return this->flag > other.flag;
    }
    };

    vector<Line> line;

    Scanline(int n) : n(n), num(0), C(0) {
    tag.assign(n * 16 + 1, 0);
    len.assign(n * 16 + 1, 0);
    }

    void add(i64 x1, i64 x2, i64 y1, i64 y2) {
    line.emplace_back(y1, x1, x2, 1);
    xx.push_back(x1);
    line.emplace_back(y2, x1, x2, -1);
    xx.push_back(x2);
    }

    void pushup(int s, int t, int p) {
    if (tag[p]) {
    len[p] = xx[t] - xx[s] ;
    } else if (s == t) {
    len[p] = 0;
    } else {
    len[p] = len[p * 2] + len[p * 2 + 1];
    }
    }

    void update(int l, int r, int flag, int s, int t, int p) {
    if (l <= s && t <= r) {
    tag[p] += flag;
    pushup(s, t, p);
    return;
    }
    int m = (s + t) / 2;
    if (l < m) update(l, r, flag, s, m, p * 2);
    if (r > m) update(l, r, flag, m, t, p * 2 + 1);
    pushup(s, t, p);
    }

    void init() {
    sort(xx.begin(), xx.end());
    sort(line.begin(), line.end());
    num = unique(xx.begin(), xx.end()) - xx.begin();
    }

    void work() {
    init();
    int pre = 0;
    for (int i = 0; i < line.size(); i++) {
    pre = len[1];
    int l = lower_bound(xx.begin(), xx.begin() + num, line[i].lx) - xx.begin();
    int r = lower_bound(xx.begin(), xx.begin() + num, line[i].rx) - xx.begin();
    update(l, r, line[i].flag, 0, num - 1, 1);
    C += abs(len[1] - pre);
    }
    }

    i64 getlen() {
    return C;
    }
    };